

Positioner user manual

Foreword

This manual introduces the application of the robot positioner, and describes in detail the hardware connection and software configuration process when the positioner is used. Reading this document will help readers to master the working principle and use method of the positioner.

Prerequisites

Before operating the robot, be sure to read the relevant safety instructions and operation instructions of the product carefully. Users must understand the safety knowledge and basic operation knowledge before using the robot's positioner function.

Please read the following documents when necessary:

- "Operation Manual of AIR-TP Teach Pendant"
- "ARL Programming Manual"
- "Fault and Troubleshooting Manual of AIR Series Industrial Robot System"

Target Groups

- Operators
- Product technicians
- Technical service personnel
- Robot teachers

Meaning of Common Signs

The signs and their meanings in this manual are detailed in Table 1.

Table 1 Signs used in this manual

Sign	Meaning
Danger	Failure to follow the instructions may cause accidents, resulting in serious or fatal personal injury.
Warning	Failure to follow the instructions may cause accidents, resulting in moderate or minor personal injury, and may also cause damage to materials only.
Notice	You are prompted to keep in mind environmental conditions and important matters, or quick operation methods.

Sign	Meaning	
(j) Tip	You are prompted to refer to other literature and instructions for additional information or more details about operation instructions.	

Manual Description

The contents of this manual are subject to supplementation and modification. Please visit "Download Center" on the website regularly to obtain the latest version of this manual in a timely manner.

Website URL: http://robot.peitian.com/

Revision History

The revision history contains the instructions for each document update. The latest version of the document contains updates to all previous versions of the document.

Version	Publication date	Modification description
V1.0.0	2020/03/17	1st official publication
V1.1.0	2020/6/30	2nd official publication Upgrade the software version to V2.6.2
V1.2.0	2020/10/15	3rd official release Upgrade the software version to V2.6.3
V1.3.0	2020/11/15	4th official release Upgrade the software version to V2.6.4

Table 2 Signs used in this manual

Document Number and Version

The document-related information is shown in Table 3.

Table 3 Document-related information

Document name	"Positioner instruction manual"
Document number	UM-ZY0212-BJ-001
Document version	V1.3.0
Software version	2.6.5

Symbol convention

Refer to Table 4 for document related symbol conventions.

Table 4 Symbol convention

Format	Significance
<>	The angle bracket "< >" indicates the button name, such as "click the <ok> button".</ok>
[]	"[]" with square brackets indicates the window name, menu name and data table, such as "pop up [New User] window".
/	Multi-level menus are separated by "/". Such as [File/New/Folder], the multi-level menu represents the [Folder] menu item under the [New] submenu under the [File] menu.

Contents

Forewo	prd	l
Conten	ts	i
1 P	ositioner overview	1
1.1 1.2 1.3	Definition of positioner Features of positioner Application scenarios of positioner	1
2 S	ervo drive connection and debugging	3
2.1 2.2	Connection method Debugging method	
3 B	asic operation	5
3.1 3.2 <i>3.2.1</i> <i>3.2.2</i>	Permission level Confirm version information Version number requirements Version information viewing process	5 . <i> 5</i>
4 S	ystem parameter configuration	9
4.1 4.2 4.3 4.4	General parameter configuration Zero calibration Positive and negative limit configuration Check the configuration	15 16
5 C	oordinate system calibration	23
5.1 5.2 5.3	Calibration of Tool Coordinate System Positioner calibration Workpiece coordinate system	26
6 J	og operation of positioner linkage function	33
6.1 <i>6.1.1 6.1.2</i> 6.2	No linkage jog operation mode <i>The robot is not linked with the positioner</i> <i>The robot is linked with the positioner</i> Linkage jog operation mode	33 33
7 T	eaching practice	37

1 Positioner overview

1.1 Definition of positioner

Positioner is one of the most widely used welding auxiliary equipment in the field of welding at home and abroad. The positioner mainly has the functions of rotation and flip, and is a typical representative of the tooling shaft. in:

- The rotation function can realize the purpose of automatic welding of the circular seam of the cylindrical workpiece.
- The flip function can make the workpiece in the best welding position.

The AIR series industrial robot of Petian Robot Technology Co., Ltd. can form an arc welding system with a positioner (as shown in Figure 1-1), which improves the efficiency and quality of welding.

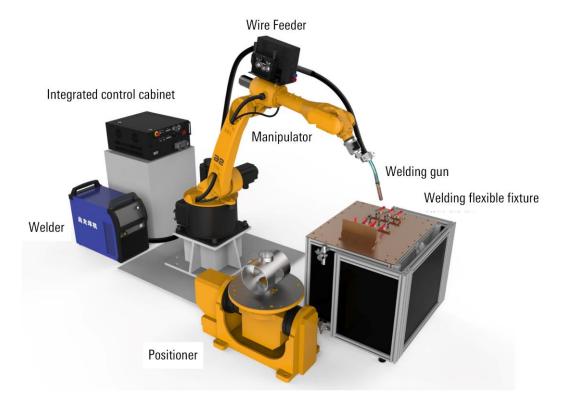


Figure 1-1 AIR series industrial robots can be combined with positioners to form an arc welding system diagram

1.2 Features of positioner

The two outstanding features of positioner applications in the welding field are as follows:

- Realize all-position welding.
- Clamping, welding all weld beads at one time.

1.3 Application scenarios of positioner

The selection of the positioner must be provided by the positioner supplier according to the needs of the customer. At present, the AIR series industrial robots of Petian Robotics Co., Ltd. are calibrated to support up to three-axis positioners.

Support "single robot + one axis/dual axis positioner" scenario: a robot is linked with a one axis or two axis positioner to cooperate with each other to complete the workpiece welding.

2 Servo drive connection and debugging

2.1 Connection method

In Figure 2-1, the AE5115 series AC servo drive is taken as an example to illustrate the connection method between the servo drive and the control cabinet and multiple motors. Please refer to "AE5115 AC Servo Drive User Manual" for the connection mode and interface description of each interface of the AE5115 series servo drive.

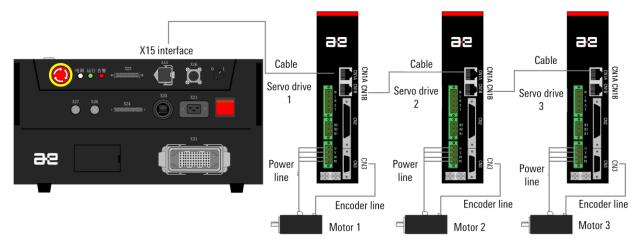


Figure 2-1 Diagram of AE5115 driver connected to three motors

Among them, the positioner axis 1 refers to the axis closest to the base, and the positioner axis 2 refers to the axis placed on the positioner axis 1 (as shown in Figure 22), and so on, as shown in Figure 2-2.

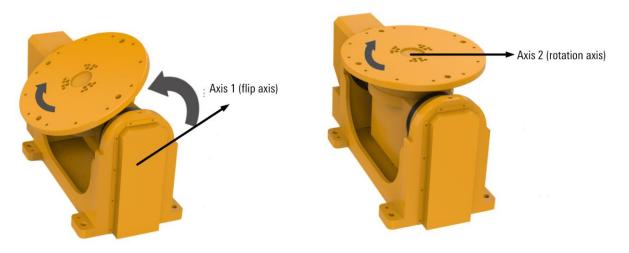


Figure 2-2 Diagram of base shaft

The connection mode of the servo drive and the motor brake is shown in Figure 2-3.

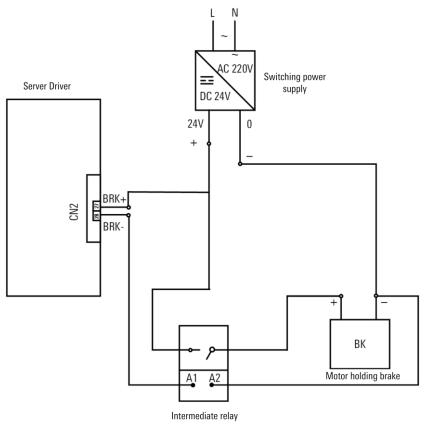


Figure 2-3 Diagram of the connection between the servo drive and the motor brake

2.2 Debugging method

After completing the equipment connection, you need to debug the parameters of the servo drive according to the actual load. For the parameter debugging method of AE5115 series servo drive, please refer to "AE5115 AC Servo Drive User Manual".

3 Basic operation

3.1 Permission level

When using the AIR-TP teach pendant for the first time, it will prompt the user interface when logging in for the first time, and the user can choose:

Teacher: Permission 4

It can perform operations such as writing the robot working program, and has the authority to modify some parameters. The initial login password is: PEACE.

Operator: Permission 5

The robot's position parameter operation status can be simply checked, and there is no program modification or parameter modification authority. The initial login password is: LOVE.

Ordinary users can only log in to the teach pendant with the authority of the teach pendant and operator.

3.2 Confirm version information

3.2.1 Version number requirements

The software version numbers of ARCS and HMI need to be higher than "V 2.6.4" in order to realize the positioner function. Therefore, before using the positioner and setting relevant parameters, you need to confirm whether the current version information matches the required version information.

3.2.2 Version information viewing process

The detailed steps for viewing version information are as follows:

Step 1. Log in to the teach pendant with the authority above "Teacher" and enter the main interface of the teach pendant as shown in Figure 3-1.

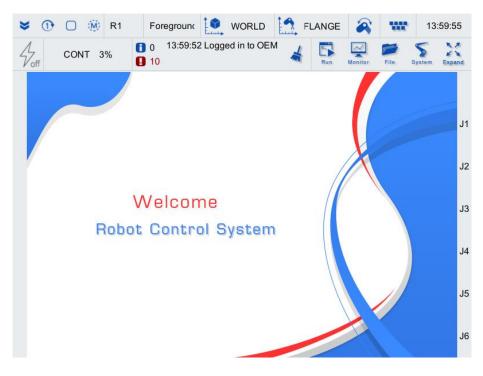


Figure 3-1 Teach Pendant Main Interface

Step 2. Click [System/System and Update/System Information] in the menu area at the upper right corner.

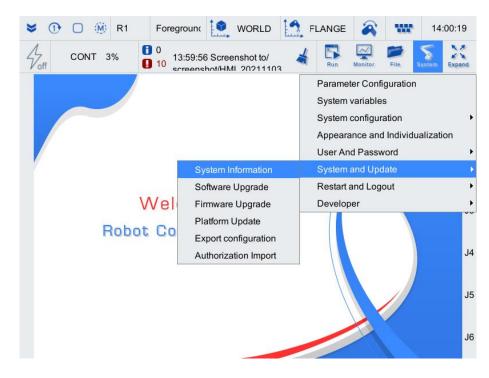


Figure 3-2 System related drop-down list

Step 3. The [Coordinate system measurement] dialog box shown in Figure 3-3 pops up, carefully check whether the [ARCS software] and [HMI software] in the [Version Information] column are both higher than "2.6.4". If yes, you can continue the parameter configuration later; if not, please contact our company's after-sales engineer in time.

CONT 3%	.ogged in to OEM	File System	6:58:37
Coordinate system measurement	¢		×
Version information			
HMI software	2.6.4.211207_rc		
HMI platform	2.2.190111		
ARCS software	2.6.4.211207_rc		
ARCS algorithm library	2.6.4.211206		J2
ARCS algorithm library interface	2.6.4.211206		
ARCS database	2.6.4.211115		
ARCS platform	1.7.191031		J3
Safety module firmware	0.0.000000		
INT	0.0.000000		
EEPROM	1 ARCCD10_DCB	•	J4
DCB firmware	Version number is not defined		
ARM	Version number is not defined		
Communication module firmware	2.5.211130		
Time information			
Coordinate system measurement			

Figure 3-3 System message

4 System parameter configuration

4.1 General parameter configuration

Before using the positioner, please complete the relevant parameter configuration of the system.

Step 1. As shown in Figure 4-1, select [System/Parameter Configuration] in the upper right corner of the main interface to enter each [Parameter Configuration] interface shown in Figure 4-2.

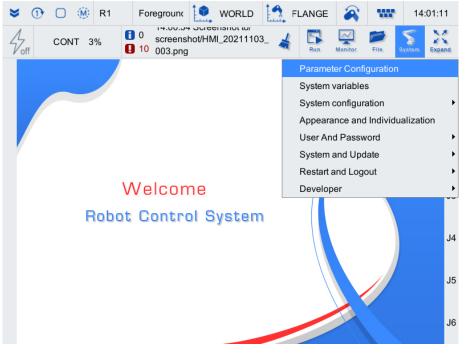


Figure 4-1 [Parameter configuration] selection list

Parameter Configu	uration			⇔⊡		Х
global	channel1	robot	extctrl	iomap	«	»

Figure 4-2 [Parameter configuration] tab display area

- Step 2. In the [Global] interface, click to select the [SERVO_NUM (Servo Number)] parameter.
- Step 3. Click <Edit>, and the dialog box shown in Figure 4-3 will pop up. Configure the parameters in [Value] and click <Yes>.

Parameter Edit	×	<
Variable:	global.SERVO_NUM	
Name:	Servo Number	
Value:	8	
Unit:		
Type:	uint	
Range:	[0,64]	
Effective way:	: Hard Reboot	
Authority:	Teacher	
Description:	Number of servo slave stations connected to the bus: the inconsistency between the configured value of this parameter and the number of actually	
	Yes Cancel	

Figure 4-3 Servo slave number configuration interface

Table 4-1 Parameter description

Parameter	Description	
Value	The number of servo slaves connected to the bus includes the 6 servo slaves of the robot bod and the external servo slaves. The external servo slave station can be configured with 1 to 6, value is $6+n$ (n is an integer, and the value range is 1 to 6). When the outer axis is a position axes can be selected as long, and the value is $6+n$ (n=1, 2, 3).	
	Tip The configuration of this parameter does not match the actual number of slaves, which may cause the bus connection to fail when the system is started.	

- Step 4. In the [Channel 1] interface, click to select the [EX_JOINT_NUM (External Axis Number)] parameter.
- Step 5. Click <Edit>, and the dialog box shown in Figure 4-4 will pop up. Configure the parameters in [Value] (see Table 4-2 for parameter descriptions) and click <Yes>.

F

Parameter Edit		Х
Variable: Name: Value: Unit: Type: Range:	channel1.EX_JOINT_NUM External Axes Num 2	
Effective way	Hard Reboot	
Authority:	Teacher	
Description:	Number of external axes controlled by this channel	
	Yes Cance	ł

Figure 4-4 External axis quantity configuration interface

Table 4-2 Parameter description

Parameter	Description	
Value	The number of external axes controlled by this channel. The value is an integer, ranging from 1 to 6. When the outer shaft is a positioner, the value range is 1-3.	

- Step 6. In the [Channel 1] interface, click to select the [MECH_UNIT_NUM (Mechanical Units Number)] parameter.
- Step 7. Click <Edit>, and the dialog box shown in Figure 4-5 will pop up. Configure the parameter in [Value] to 2 (see Table 4-3 for parameter description), click <Yes>.

Parameter Edit	X
Variable: Name:	channel1.MECH_UNIT_NUM Mechanical Unit Num
Value:	2 💌
Unit:	
Туре:	uint
Range:	
Effective way:	Hard Reboot
Authority:	Teacher
Description:	Number of mechanical units in the channel
	Yes Cancel

Figure 4-5 Number of mechanical units configuration interface

Table 4-3 Parameter description

Parameter	Description
Value	The number of mechanical units in this channel. When configuring the positioner function, the mechanical unit includes the robot body and the positioner, so the value is configured as 2.

- Step 8. In the [Channel 1] interface, click [+] to the left of the [MECH_UNIT_MODEL (Mechanical Unit Model)] parameter, and click to select "[1]" ([0] is the robot body, [1] is the sub-item of positioner).
- Step 9. Click <Edit>, and the dialog box shown in Figure 4-6 will pop up. Configure the parameter in [Value] as "Positioner", click <Yes>.

Parameter Edit		X
Variable: Name:	channel1.MECH_UNIT_ MODEL.[1]	
Value:	Positioner	
Unit:		
Type:	string	
Range:		
Effective way:	Hard Reboot	
Authority:	Teacher	
Description:	Model of mechanical unit controlled by this channel	
	Yes Cance	I

Figure 4-6 Mechanical unit model configuration interface

- Step 10. In the [Channel 1] interface, click [+] to the left of the [MECH_UNIT_NAME (mechanical unit name)] parameter, and click to select "[1]" ([0] is the robot body, [1] is the positioner.) sub-items.
- Step 11. Click <Edit>, and the dialog box shown in Figure 4-7 will pop up. Configure the parameters in [Value] (for example: P1), and click <Yes>.

Parameter Edit		X		
Variable:	channel1.MECH_UNIT_ NAME.[1]			
Name:				
Value:	P1			
Unit:				
Type:	string			
Range:				
Effective way:	Hard Reboot			
Authority:	Teacher			
Description:	Name of mechanical unit controlled by this channel: the user can set this parameter to distinguish mechanical units of			
	Yes	Cancel		

Figure 4-7 Mechanical unit name configuration interface

Step 12. In the [Channel 1] interface, click [+] on the left side of the [EXJOINT_TYPE (external axis type)] parameter, and

click to select "[0]" (when the number of external axes is 1) in the expanded sub-items item.

When configuring, you need to select several sub-items according to the actual situation. For example: when there are two external axes, select [0], [1] sub-items for configuration; when there are three external axes, select [0], [1], [2] sub-items for configuration.

Step 13. Click <Edit>, the dialog box shown in Figure 4-8 pops up. Configure the parameter in [Value] to 0 (rotation axis),

and click <Yes>.

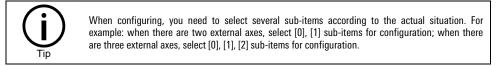

Parameter Edit		Х
Variable: Name:	channel1.EXJOINT_TYP	'E.[0]
Value:	1 💌	
Unit:		
Type:	int	
Range:		
Effective way:	Hard Reboot	
Authority:	Teacher	
Description:	Type of external axis; 0: rotational axis, 1: linear a	axis
	Yes Ca	incel

Figure 4-8 External shaft type configuration interface

Step 14. If the external shaft is connected with a reducer, in the [Channel 1] interface, click [+] to the left of the

[EXJOINT_REDUCER_RATIO (external shaft reducer reduction ratio)] parameter, and click to select [0] in the

expanded sub-items (When the number of external axes is 1).

Step 15. The dialog box shown in Figure 4-9 pops up. Configure the parameter in [Value] (this value needs to be

determined according to the actual connection positioner parameters), and click <Yes>.

Parameter Edit		X		
Variable:	channel1.EXJOINT	_		
Name:				
Value:	100			
Unit:				
Type:	double			
Range:				
Effective way:	Hard Reboot			
Authority:	Teacher			
Description:	n: Reduction ratio of reducer on external axis: this value represents the ball screw ratio for linear axis, unit: mm/r			
	Yes	Cancel		

Figure 4-9 External shaft reducer reduction ratio configuration interface

Step 16. After the parameter configuration is completed, click <Save>, and the dialog box shown in Figure 4-10 will pop

up. Select "Save all" in [Please select save type], and click <Yes>.

		X
Please se	lect the sav	ve type:
Save all		•
	Vac	Canaal
	Yes	Cancel

Figure 4-10 Save as type dialog

Step 17. Click <Yes> in the prompt dialog box that pops up. As shown in Figure 4-11.

Prompt	X
Confirm to save all modified parameters?	
Yes Cancel	

Figure 4-11 Confirm to save the modification prompt box

Step 18. Click <Yes> in the pop-up dialog box of successful parameter saving. As shown in Figure 4-12. Power off and restart the control cabinet, and the parameter configuration takes effect.

Prompt		×
i	Parameters saved successfully!	
	Yes	

Figure 4-12 Save successful prompt box

4.2 Zero calibration

Before configuring the positive and negative limit positions, you need to calibrate the zero point of the external axis first. The calibration steps are as follows:

- Step 1. Move the external axis to the zero-point desired by the user.
- Step 2. Select [Run/Calibrate/Zero Calibration] on the main interface of the teach pendant, as shown in Figure 4-13.

Figure 4-13 Main interface diagram

Step 3. In the pop-up [Zero Calibration] interface, select the external axis to be calibrated, and click the <Calibrate> button. As shown in Figure 4-14.

Zero	Zero Calibration X				
J1:	Calibrate	External J1:	Calibrate		
J2:	Calibrate	External J2:	Calibrate		
J3:	Calibrate	External J3:	Calibrate		
J4:	Calibrate	External J4:	Calibrate		
J5:	Calibrate	External J5:	Calibrate		
J6:	Calibrate	External J6:	Calibrate		
	Calibrate All				

Figure 4-14 Zero point calibration interface diagram

Step 4. Click <Yes> in the prompt dialog box that pops up, as shown in Figure 4-15. After the calibration is successful, the calibration success will be displayed in the alarm information prompt column of the main interface.

Prompt			X
(?)	Need recalit	oration?	
\bigcirc			
	Yes	Cancel	

Figure 4-15 Prompt interface diagram

4.3 Positive and negative limit configuration

By configuring the positive and negative limit of the positioner, the maximum range of the robot body can be specified. Before setting the positive and negative limits, you need to complete the zero-point calibration of the positioner and make the zero-point effective.

The configuration steps of positive and negative limit parameters are as follows:

Step 1. As shown in Figure 4-16, select [System/Parameter Configuration] in the upper right corner of the main interface, and then enter the various tab selection interfaces shown in Figure 4-17.

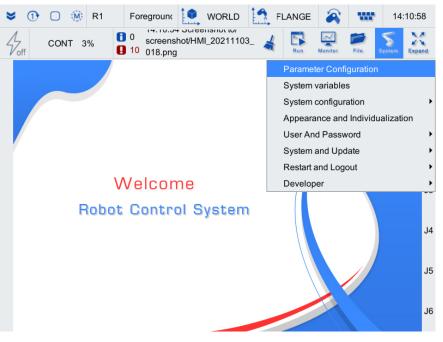


Figure 4-16 "Parameter configuration" selection list

Parameter Configuration			⇔			\times	
global	channel1	robot	extctrl	ion	nap	«	»

Figure 4-17 "Parameter Configuration" tab display area

Step 2. In the [Channel 1] interface, click [+] on the left side of the [EXJOINT_MAX_STROKE (external axis positive

limit)] parameter, and click to select [0] in the expanded sub-items (when the number of external axes is 1).

When configuring, you need to select several sub-items according to the actual situation. For example: when there are two external axes, select [0], [1] sub-items for configuration; when there are three external axes, select [0], [1], [2] sub-items for configuration.

Step 3. The dialog box shown in Figure 4-18 pops up. Configure the parameter in [Value] (this value is the actual

positive limit value of the positioner), and click <Yes>.

Parameter Edit	Х
Variable:	channel1.EXJOINT_MAX_ STROKE.[0]
Name:	
Value:	180
Unit:	
Type:	double
Range:	
Effective way	: Hard Reboot
Authority:	Teacher
Description:	Positive limit on external axis, unit: degree for rotational axis, or mm for linear axis Yes Cancel
igure 4-18 External axis	positive limit configuration interface
	tting the actual positive and negative limit value ran cording to the maximum movement range of the act

Step 4. In the [Channel 1] interface, click [+] on the left side of the [EXJOINT_MIN_STROKE (external axis negative

limit)] parameter, and click to select [0] in the expanded sub-items (when the number of external axes is 1).

Tip

When configuring, you need to select several sub-items according to the actual situation. For example: when there are two external axes, select [0], [1] sub-items for configuration; when there are three external axes, select [0], [1], [2] sub-items for configuration.

Step 5. The dialog box shown in Figure 4-19 pops up. Configure the parameter in [Value] (this value is the actual

negative limit value of the positioner), and click <Yes>.

Parameter Edit		X
Variable:	channel1.EXJOINT_MIN_ STROKE.[0]	
Name:		
Value:	-180	
Unit:		
Type:	double	
Range:		
Effective way:	Hard Reboot	
Authority:	Teacher	
Description:	Negative limit on external axis, unit: degree for rotational axis, or mm for linear axis	
	Yes Cance	I

Figure 4-19 External axis negative limit configuration interface

Step 6. After the parameter configuration is completed, click <Save>, and the dialog box shown in Figure 4-20 will pop

		×							
Please select the save type:									
Save all									
	Yes	Cancel							

up. Select "Save all" in [Please select save type], and click <Yes>.

Figure 4-20 Save as type dialog

Step 7. Click <Yes> in the prompt dialog box that pops up. As shown in Figure 4-21.

Prompt		×
?	Confirm to save all modified parameters?	
	Yes Cancel	

Figure 4-21 Confirm to save the modification prompt box

Step 8. Click <Yes> in the pop-up dialog box of successful parameter saving. As shown in Figure 4-22. Power off and

restart the control cabinet, and the parameter configuration takes effect.



Figure 4-22 Save successful prompt box

4.4 Check the configuration

After power off and restart, click [System/Parameter Configuration] on the main interface of the teach pendant, and add the newly created [Positioner P1] tab in the [Parameter Configuration] interface. Click this tab to enter the interface shown in Figure 4-23 to view and modify parameters. The parameter configuration of the positioner is the same as the parameter configuration method in [Channel].

Parameter Configu	ration					⇔	בום		×
robot	ex	tctrl	iomap	safetyic)	Positio	onerP1	«	»
Variable		Name		Value	Unit	Туре	Validit	y	Ran
MECH_UNIT_M	ODE	Mech Uni	t Model Flag	Positioner		string	Hard F	Reboot	
MECH_UNIT_T	YPE	Mechanic	al Unit Type	positioner		string	Hard F	Reboot	{robc
POSITIONER_A	XIS	Axis Num	I.	2		uint	Hard F	Reboot	{1,2,:
+ POSITIONER_U	JSER	User Defi	ned Flange CS		mm,°	frame	Hard F	Reboot	
- POSITIONER_E	XAXI	Mapping V	With External Axis			uint[3]	Immed	liately	
[0]				1		uint	Immed	liately	
[1]				2		uint	Immed	liately	
[2]				3		uint	Immed	liately	
+ POSITIONER_C	EOM	Geometry	,		mm,°	frame[3]	Immed	liately	
•									
Refresh	1		Edit	Save			Reset		

Figure 4-23 Positioner T1 parameter configuration interface

The parameter description is shown in Table 44.

Table 4-4 Parameter description

Parameter	Description				
POSITIONER_AXIS_NUM (Number of axes)	The number of axes of the positioner.				
	Notice The number of shafts of the positioner shall be consistent with that of channel 1.				
POSITIONER_EXAXIS_MAP (Mapping of each axis and outer axis)	The mapping relationship between each axis of the positioner and the outer axis. The default configuration is that the positioner 1 axis corresponds to the outer axis 1, the positioner 2 axis corresponds to the outer axis 2, and the positioner 3 axis corresponds to the outer axis 3. The user does not need				

Parameter	Description
	to modify the configuration, and the positioner needs to be installed according to this mapping sequence when installing the positioner.

5 Coordinate system calibration

When performing positioner linkage, by calibrating the coordinate system related to the positioner linkage function, the robot TCP can be made to move relative to the moving workpiece on the positioner according to the program setting, as shown in Figure 5-1.

Figure 5-1 Diagram of positioner linkage

5.1 Calibration of Tool Coordinate System

The calibration steps of tool coordinate system are as follows:

- Step 1. Enter the [Coordinate System Measurement] dialog box through the [Run/Coordinate System Measurement] path, and select the "Tool Coordinate System" option in the [Coordinate System Type].
- Step 2. Click to select the row where the tool coordinate system tool0 is located, and click <Multi-point method> to pop up the interface as shown in Figure 5-2. Calibrate the direction of the coordinate system XYZ.

muti-point		X
Calibration	point number 4 💌	
state	Operation method	Move point
×	Move it from the 1 direction to the reference point and click on the record	Record Move
×	Move it from the 2 direction to the reference point and click on the record	Record Move
*	Move it from the 3 direction to the reference point and click on the record	Record Move
×	Move it from the 4 direction to the reference point and click on the record	Record Move
	Remeasure	Calculate

Figure 5-2 Multi-point calibration

Step 3. Follow the operation method prompted on the interface to complete the <Record> of each point. When all " \times " changes to " \checkmark " (as shown in Figure 5-3), click <Calculate> to complete the calibration.

muti-point		X
Calibration	point number 4 💌	
state	Operation method	Move point
1	Move it from the 1 direction to the reference point and click on the record	Record Move
1	Move it from the 2 direction to the reference point and click on the record	Record Move
1	Move it from the 3 direction to the reference point and click on the record	Record Move
1	Move it from the 4 direction to the reference point and click on the record	Record Move
	Remeasure	Calculate

Figure 5-3 Successful multi-point calibration

When you need to specify the direction of each axis of the tool coordinate system, you need to follow the steps 4 to 5 below.

Step 4. (Optional) Click to select the row where the tool coordinate system tool0 is located, and click <Three Point Method> to pop up the interface as shown in Figure 5-4. By calibrating the posture ABC of the coordinate

system.

Attitude ca	librate		X
Calibratio	on point num	per 3 -	
State	figure	Operation Method	Move Point
×	Y Z X	Move the robot, make the Z axis of the tool coordinate system along the vertical direction, parallel to the Z axis of the base coordinate system	Record Move
*	O Y Z X	On the basis of the first step, move the TCP point along the positive X axis of the tool coordinate system for a certain distance and record	Record Move
×	Y Z	On the basis of the second step, move the TCP point along the positive Y axis of the tool coordinate system for a certain distance and record	Record Move
	Reme	asure Calcul	ate

Figure 5-4 Three-point calibration

Step 5. (Optional) Follow the instructions on the interface to complete the <Record> of each point. When all the " \times " changes to " $\sqrt{}$ " (as shown in Figure 5-5), click <Calculate> to complete the calibration.

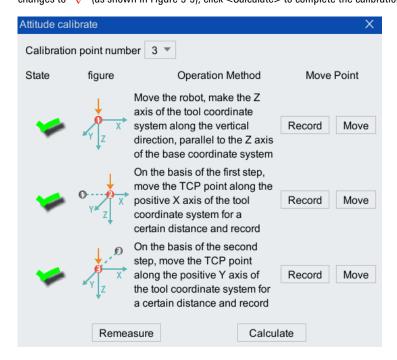
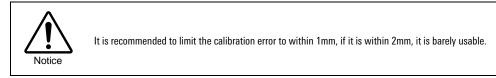
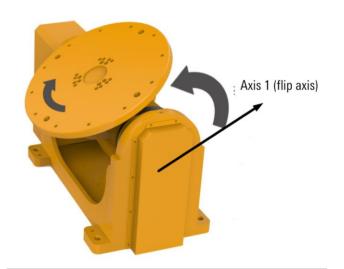



Figure 5-5 Successfully calibrated by three-point method

Step 6. Click the <Save> button to complete the calibration.



5.2 Positioner calibration

The joint coordinate system represents the location of a joint when the joint is at the zero position, and its representation is in the form of x, y, z, a, b, c, and the default z-axis is along the axis of the joint, that is, for rotation axis, the joint rotates around the z-axis, and for the movement axis, the joint moves along the z-axis.

When the geometric parameters between the axis of the positioner are unknown, the multi-point method can be used for axis-by-axis calibration (refer to Figure 5-6). The axis 1 coordinate system and the base coordinate system are coincident, so there is no need to specifically calibrate the base coordinate system of the positioner.

(a)Schematic diagram of axis 1

(b)Schematic diagram of axis 2

Figure 5-6 Schematic diagram of positioner shaft serial number

The specific steps for calibrating the joint coordinate system of the positioner are as follows:

Step 1. Before calibrating the positioner, click [Continuous] in the upper left corner of the teach pendant interface, as shown in Figure 5-7.



Figure 5-7 Teach Pendant Interface

Step 2. In the axis control mode setting interface that pops up, select [Tool] as "tool0" as a reference, as shown in Figure 5-8.

JOG	Х						
🔿 Single-axis 🤇	Cartesian model 🔿 Tool mode						
O Main-axis Mode O Extern-axis mode							
Speed override	- + 3%						
Tool	tool0 🔻						
Coordinate system	WORLD 🔻						
O Linkage							

Figure 5-8 Axis control mode setting interface

Step 3. Click [Run/Coordinate System Measurement] in the menu area at the upper right corner of the teach pendant interface.

Step 4. The interface shown in Figure 5-9 pops up, and select "Base Coordinate System" in [Coordinate System measurement]. Click to select the row where "P1" is located, and click <Calibration> to pop up the [Positioner Calibration] interface.

≽	1		R1	Foregrou	nc 🚺	WORLD	F	LANGE	8	1000	16	:39:18
4		CONT 39	6 1	0		d in to OE	4	Run	Monitor	File,	System	Expand
¢	Coordin	ate system	measuren	nent					⇔	בום		×
	Coordi	inate syste	m Type	Base 🔻								J1
	ID	Name	х	Y	Z	Α	В	С	Refe	rence		01
	0	R1	0.000	0.000	0.000	0.000	0.000	0.000	WO	RLD		
	1	P1	0.000	0.000	0.000	0.000	0.000	0.000	WO	RLD		J2
												J3
												J4
												J5
С	oordina	te system r	neasurem		ibrate	Refresh	Save					J6

Figure 5-9 Base coordinate system calibration interface

- Step 5. When calibrating, you need to determine a sharp point on the second axis of the positioner (this sharp point should be far away from the axis of the second axis), and then the TCP of the robot should be aligned with this sharp point when calibrating the positioner.
- Step 6. First calibrate the axis 1 coordinate system (axis 2 remains unchanged), click to select the row where "Axis 1" is located, and click <Calibration> to pop up the calibration interface as shown in Figure 5-10.
- Step 7. Configure [Reference Mechanical Unit], [base], and [Calibration point number]. Refer to Table 5-1 for the configuration method. Follow the prompt operation steps to <Record> each point. After all records are completed, click <Calibrate >. When [Status] shows that the calibration is successful, click <Next> to calibrate the axis 2 coordinate system.

Calibrate				X
Reference r	nechanical unit R1 -	base	robot	~
Axis numbe	r: 1	Calibra	ation point	number 3 🔻
×	将变位机1轴移动到位 位机上一固定点	置1,使T	CP驶向变	Record
*	将变位机1轴移动到位 位机上一固定点	置2,使T	CP驶向变	Record
*	将变位机1轴移动到位 位机上一固定点	置3,使T	CP驶向变	Record
	•	Cal	ibrate	Remeasure
<u> </u>	-	l	Up	Down

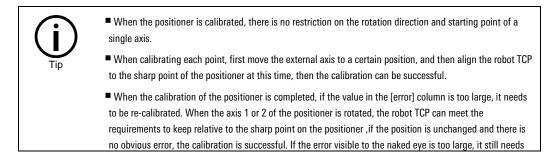
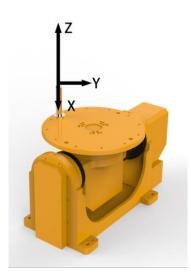
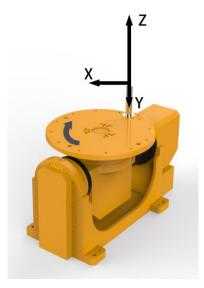

Figure 5-10 Axis 1 coordinate system calibration

Table 5-1 Parameter Description

Parameter	Description
Reference mechanical unit	The mechanical unit referenced by the positioner coordinate system. When there are only robots and positioners in the system, this value is R1.
base	Reference benchmark. The values are as follows: Robot: The use scene is "one robot + one positioner" or "one robot + multiple
	positioners". Positioner: The use scene is "multiple robots + one positioner".((see "multimove user
	manual" for details))
Calibration point number	The number of calibration points, the values are as follows:
	 4(More accurate)

Step 8. Calibrate the axis 2 coordinate system (axis 1 remains stationary), the calibration method is the same as that of axis 1. When the [Status] column shows that the calibration is successful, the calibration is completed, click


the <Save> button to end the calibration of the positioner, and restart the control cabinet after power off.


to be re-calibrated.

5.3 Workpiece coordinate system

When the user calibrates the workpiece coordinate system, the workpiece can be set as the reference mechanical unit. For example, if the workpiece coordinate system refers to the positioner, then when the positioner is moving, the workpiece coordinate system will also move, as shown in Figure 5-11.

(a)

(b)

Figure 5-11 Diagram of the workpiece coordinate system on the positioner moving with the movement of the positioner

The specific steps for calibration of the workpiece coordinate system are as follows:

- Step 1. Enter the [Coordinate System Measurement] interface as shown in Figure 5-12 through the [Run/Coordinate System Measurement] path, and select the "Workpiece Coordinate System" option from the [Coordinate System Type].
- Step 2. Change the name of the [mechanical unit] corresponding to the workpiece coordinate system wobj0 to "P1".

	oordina	CONT 34	meas	0 5 surement			Lala	FLANG		File Syst	
	ID	Name		Y	z	Α	в	С	Move	Mech Unit	J1
	0	wobj0	000	0.000	0.000	0.000	0.000	0.000		P1 ·	
	1	wobj1	00	0.000	0.000	0.000	0.000	0.000		R1	J2
	2	wobj2	000	0.000	0.000	0.000	0.000	0.000		WORLD	
	3	wobj3	000	0.000	0.000	0.000	0.000	0.000		WORLD	J3
	4	wobj4	000	0.000	0.000	0.000	0.000	0.000		WORLD	
	5	wobj5	000	0.000	0.000	0.000	0.000	0.000		WORLD	
	6	wobj6	00	0.000	0.000	0.000	0.000	0.000		WORLD	J4
	7	wobi7	000	0.000	0.000	0.000	0.000	0.000		WORLD	J5
Co	3-point Refresh Save								J6		

Figure 5-12 Workpiece coordinate system calibration

- Step 3. (Optional) Click the cell in the row of the "workpiece coordinate system" to be set to make it editable, and modify x, y, Z, a, B and C to the required values through the keypad.
- Step 4. After configuration, click < Save >.

6 Jog operation of positioner linkage function

There are 3 jog operation modes of positioner linkage function, including 2 non linkage modes and 1 linkage mode.

6.1 No linkage jog operation mode

6.1.1 The robot is not linked with the positioner

The workpiece coordinate system of the robot is a coordinate system not associated with the positioner, and the robot is not linked. In this case, no additional axis control mode setting is required.

6.1.2 The robot is linked with the positioner

The workpiece coordinate system of the robot is the coordinate system associated with the positioner, and the robot is not linked.

Figure 6-1 Diagram of robot non linkage operation

The setting steps of this mode are as follows:

Step 1. Click the "CONT 3%" icon in the upper left corner of the main interface, and the [JOG] operating parameter configuration interface will pop up. As shown in Figure 6-2.

JOG		×					
🔘 Single-axis 🤇	Cartesia	an model 🔘 Tool mode					
O Main-axis Mode O Extern-axis mode							
Speed override	-	+ 3%					
Tool	tool0	Ŧ					
Coordinate system	wobj0	▼					
C Linkage							

Figure 6-2 JOG interface

Step 2. Move the TCP point to a fixed sharp point, and configure the parameters of the [JOG] interface. The configuration method is shown in Table 6-1.

Table 6-1 Configuration steps and instructions

Steps	Parameter	Configuration instructions
1	○ Single-axis	Click and select [Cartesian mode]. In this mode, the TCP point of the operator can be controlled to move along the positive or negative direction of X axis, Y axis or Z axis, or the TCP of the manipulator can be controlled to rotate around Z axis, Y axis or X axis.
2	O Main-axis Mode 💿 Extern-axis mode	Click and select [external axis mode], or you can switch the mode by pressing the shortcut key $<$ F2 $>$.
3	Speed override - + 3%	In jog mode, this item indicates that the speed magnification of the lower "jog" can be adjusted through " """" and """" in the function keys of the teaching pendant.
4	Tool	Select the tool "tool0".
5	Coordinate system	Select "wobj0".
6	Linkage	Uncheck the [linkage] check box.

6.2 Linkage jog operation mode

The workpiece coordinate system of the robot is the coordinate system associated with the positioner. The robot is linked with the positioner, that is, the position and attitude of the TCP of the robot remain relatively stationary relative to the workpiece coordinate system, as shown in Figure 6-3.

Figure 6-3 Diagram of robot linkage operation

The setting steps of this mode are as follows:

Step 1. Click the "CONT 3%" icon in the upper left corner of the main interface, and the [JOG] operating parameter configuration interface will pop up. As shown in Figure 6-4.

JOG		×				
🔿 Single-axis 🤇	Cartesiar	model 🔿 Tool mode				
O Main-axis Mode O Extern-axis mode						
Speed override	-	+ 3%				
Tool	tool0	•				
Coordinate system	wobj0	~				
🔘 Linkage						

Figure 6-4 Operation parameter configuration interface

Step 2. Move the TCP point to a fixed sharp point, and configure the parameters of the [JOG] interface. The configuration method is shown in Table 6-2.

Table 6-2 Configuration steps and instructions

Steps	Parameter	Configuration instructions
1	Single-axis Cartesian model Tool mode	Click and select [Cartesian mode]. In this mode, the TCP point of the operator can be controlled to move along the positive or negative direction of X axis, Y axis or Z axis, or the TCP of the manipulator can be controlled to rotate around Z axis, Y axis or X axis.
2	O Main-axis Mode Strern-axis mode	Click and select [external axis mode], or you can switch the mode by pressing the shortcut key $<$ F2 $>$.
3	Speed override + 3%	In jog mode, this item indicates that the speed magnification of the lower "jog" can be adjusted through "Image: and "Image: a the function keys of the teaching pendant.
4	Tool	Select the tool "tool0".

Steps	Parameter	Configuration instructions		
5	Coordinate system	Select "wobj0".		
6	Linkage	Uncheck the [linkage] check box.		

After the calibration is completed, rotate the axis 1 or axis 2 of the positioner, and the robot TCP should keep the relative position unchanged with the sharp point on the positioner, and there is no obvious error. If the error visible to the naked eye is too large, it needs to be re-calibrated.

7 Teaching practice

The enable buttons can be installed on the left and right sides of the rear shell of the teach pendant. The default installation is on the right side when leaving the factory, as shown in Figure 4-9.

The <Enable> button provides 3 key positions, the specific operation method is as follows:

- The power is turned on when the first key position is pressed lightly.
- The teach pendant in the second (middle) key position can operate the robot manipulator.
- The power is cut off when the button is completely released.

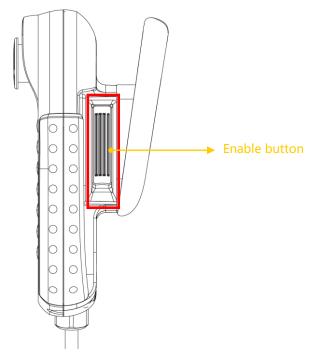


Figure 7-1 Teach pendant enable button

The operation steps of drag teaching are as follows:

- Step 1. In the drag teaching mode, while pressing the <Enable> button I of the teach pendant, manually drag the robot to move.
- Step 2. After moving to the target point, release the <Enable> button.
- Step 3. Click [Run/Program Editor] on the main interface of the teach pendant.
- Step 4. In the pop-up [Program Editor] interface, click [More Edit/Open] to open the created arl program file.
- Step 5. Manually enter the instructions to be inserted. If the robot manipulator needs to be linked with the positioner, the lin and cir instructions should be inserted. (As shown in Figure 71)

lin				X
р	p1		t	tool0 💌
v	V6		w	WORLD -
s	s7		dura	6
		Insert]	

Figure 7-2 Insert lin command interface

Step 6. Click the "Image" after [p], and select [Workpiece Coordinate System] as the calibrated workpiece coordinate system of the positioner (as shown in Figure 72). Click <Yes>.

p2										Х
tool	FLANGE 🔻					Work	k w	obj0	•	
, ·	Not	oj Co	oord	ina	ate					
Х	-82	2.000	0		mm	А	90	.000		deg
Y	378.000			mm	в	2.5	592	deg		
Z	30	3.93	7		mm	С	-9(-90.000		deg
	Exte	ernal	Axi	s						
EJ1	-26	68.93	37		mm	EJ4	9.0)00e+	09	mm
EJ2	0.0	000			mm	EJ5	9.000e+09 m			mm
EJ3	9.0)00e	+09		mm	EJ6	9.0)00e+	09	mm
		J6	J5	J4	J3	J2 .	J1			
🗹 ti	um	0	0	0	0	0	0	b	Y	es
				-	-					

Figure 7-3 Workpiece coordinate system selection interface

Step 7. On the motion instruction interface as shown in Figure 7-1, click <Insert > to complete the insertion of the motion instruction.

WeChat Official Account

Official Website

Sevice Hotline : 400-990-0909 Official Website : http://robot.peitian.com

UM-ZY0212-BJ-001 / V1.3.0 / 2021.11.04 © 2011-2021 Peitian Robotics Co., Ltd. All right Reserved.

The description about the product characteristics and availability does not constitute a performance guarantee, and is reference only. The scope of services for the products delivered is subject to the specific contract.